
HOL: Garbage-First
Collector Tuning

Monica Beckwith

G1 GC Regions

2

Young Regions

Old Regions

H Humongous Regions

H

H

H

Young Collection – Ergonomics and
Adaptability

l  Young generation size is based on your pause time
target and internally set min and max bounds
l  -XX:MaxGCPauseMillis = 200 (default)
l  Default min nursery size = 5% of your Java heap
l  Default max nursery size = 60% of your Java heap

l  Prediction logic
l  Determines how much time it will take to collect 1 region
l  (Re-)Sizes the young generation accordingly after each

collection
3

Sample GCHisto Timeline Plot

4

Sample GCHisto Pause Distribution
Plot

5

Sample Heap Information Plot

6

How to Increase Max Limit on
Nursery?

-XX:MaxNewSize=800m

7

Marking Threshold and Concurrent
Cycle

Ø  Threshold default: 45% of your Java heap
Ø  -XX:InitiatingHeapOccupancyPercent=<value>

Ø  When threshold’s crossed, G1 starts a
concurrent cycle
Ø  Some phases are concurrent and some are stop-the

world
Ø  Multi-phased concurrent marking cycle finds the

“best” regions to be collected
Ø  Live-ness accounting

8

Marking Threshold and Concurrent
Cycle

Ø  After the marking phase is complete, G1 has
information on which old regions to collect
Ø  Regions are ordered based on “collection

efficiency”
Ø  Expensive regions would be regions with lots of live

data and large RSets

Ø  Completely free regions are collected during
cleanup phase

6530.615: [GC cleanup 13G->12G(18G),
0.0388540 secs]

9

Marking Threshold – Example 1
(non-lab)

10

Default IHOP IHOP increased to 75%

Java heap size Java heap size Max heap occupancy

Max heap occupancy

Marking Threshold

Marking Threshold

Marking Threshold – Example 2
(non-lab)

11

Default IHOP

IHOP increased to 70%

25% Young GCs

60% Mixed GCs

30% Mixed GCs

64% Young GCs

Better to do more young GCs
than mixed GCs

How to Increase the Marking
Threshold?

-XX:InitiatingHeapOccupancyPercent=55

12

Taming Mixed GCs

Ø  Adjust -XX:G1HeapWastePercent
Ø  Defaults to 10% of your Java heap
Ø  Lower value means you are willing to

collect expensive regions during your
mixed collection.

Ø  Higher value means that you are
willing to “waste” that much heap.

13

Evacuation Failures

Ø  Evacuation failures indicate that G1 ran out of
heap regions either –
Ø  while copying to survivor regions or
Ø  while promoting or copying live objects in-to the

old generation

Ø  Prior to Java 7u40 evacuation failures shown as
a “to-space overflow” in the GC logs

Ø  Java 7u40 onwards shows “to-space exhausted”
in the GC logs

14

Evacuation Failures – How to Avoid
Them?

Ø  Get a baseline with bare minimum options:
Ø  -Xmx, -Xms and -XX:MaxGCPauseMillis=<value>
Ø  Over-tuning is NOT for G1

15

Evacuation Failures

Ø  Plot the heap utilization stats from the log
Ø  Marking threshold too high?

Ø  Can’t keep up with promotions

Ø  Marking threshold too low?
Ø  Not reclaiming much space from marking cycle

Ø  Concurrent cycles taking a long time to
complete?
Ø  Increase the thread count: ConcGCThreads

16

Evacuation Failures

Ø  Sometimes survivor space gets exhausted
Ø  Increase the G1ReservePercent

Ø  It’s a false ceiling
Ø  Defaults to 10
Ø  G1 will cap it off at 50%

17

18

So, Let’s Get It Started!

* Remember to increase the thread count
to 750.

Lab 4 Tuning

Tuning parameters recommendation for Lab 4:

-Xms == -Xmx
-XX:MaxNewSize=800m

kirk@kodewerk.com
monica@beckwithclan.com

19

